
SMB and NFS compared

SambaXP 2024
Somewhere in the internet

Volker Lendecke

SerNet / Samba Team

2024-04-18



Access paths to file systems

▶ Posix, NFS and SMB all give access to directories and files

▶ All three worlds serve different requirements with different historic
backgrounds.

▶ Posix access goes through a local syscall interface
▶ When the “server” (i.e. the kernel) dies, all clients are gone
▶ When the “client” (i.e. a process) dies, the kernel immediately knows
▶ Client ↔ Server latency exists, but is extremely low

▶ NFS and SMB should not trip over the Fallacies of Distributed
Computing (see wikipedia)
▶ Everything between client and server is slow, either side and everything

in between can fail or even lie.

Volker Lendecke SMB and NFS (2 / 15)



Interoperability

▶ Different access paths to the same file system must coordinate
▶ Local file systems provide Posix (or rather typically Linux) semantics
▶ Linux NFS servers (knfsd/Ganesha/others) map these semantics for

NFS protocol requirements
▶ Same for Linux SMB servers such as ksmbd and smbd

▶ Other protocols like S3 also live in the same space

▶ Exposing protocol semantics in isolation is problem solved pretty well
in both the FOSS as well as in the proprietary worlds

▶ Cross-Protocol semantics to my knowledge have never been
addressed, at least not in “my bubble”, the FOSS world around
Samba

Volker Lendecke SMB and NFS (3 / 15)



How hard can it be?

▶ Why is it so hard?
▶ Posix has its subtleties (for example how to properly fsync), but basics

semantics are well-known to Linux developers
▶ Both SMB and NFS are complex protocols with decades of history
▶ Implementing either protocol is too much even for a single developer,

so understanding and implementing both takes teams separate from
each other.

▶ Why has this never been solved?
▶ From a Samba perspective, nobody cared enough
▶ Maybe the “NFS locking does not work” legend is either true or

sufficiently sticky for users to not rely on locking at all

Volker Lendecke SMB and NFS (4 / 15)



Areas of difference

▶ Security
▶ NFS is usually machine-based, SMB sessions are per user
▶ ACLs

▶ File name semantics
▶ Case sensitive vs insensitive, special file names/characters

▶ File and directory metadata
▶ Time stamps, xattrs, alternate data streams

▶ Request replay
▶ Locking

▶ Share modes/reservations, byte range locks

▶ Client caching
▶ Leases vs delegations

Volker Lendecke SMB and NFS (5 / 15)



Security

▶ SMB had password protection of shares since the CORE protocol in
the 1980s, users could not be distinguished initially

▶ With LANMAN 1.0 user login was added to the protocol, since then
all SMB traffic is per user (machines can also be “users”)

▶ The scope of a security context is the transport connection

▶ NFS relies on the underlying ONC-RPC for security

▶ Only with NFSv4.0 RPC security via GSSAPI is a requirement
▶ Scope of a security context in NFS is the individual request

▶ NFS allows different RPC security settings per directory/file

▶ NFS protects locking state (open/share/delegation/brlock) separately
from any other authentication on the transport

▶ A lot of NFS deployments run without any security

Volker Lendecke SMB and NFS (6 / 15)



ACLs

▶ SMB has ACLs defined by the Windows security model and NTFS
▶ Principals are Security Identifies
▶ SIDs don’t have a type such as user/group/machine etc.
▶ 13 bits granting or denying specific types of access

▶ NFS deals with permission bits (RWXRWXRWX)
▶ NFSv4 adds the 13 bits from the Windows doc plus 2 more

(WRITE RETENTION, WRITE RETENTION HOLD)
▶ NFSv4.1 adds ACL inheritance flags
▶ Deny ACEs and system acls supported
▶ ACCESS request can only query 6 of the 15 bits
▶ ACE principals are full UTF-8 strings
▶ user@domain recommended, numeric string possible, no real mandatory

standard

Volker Lendecke SMB and NFS (7 / 15)



File and directory metadata

▶ Not much significant difference

▶ SMB has infolevels, NFS can query individual attributes

▶ Both have the typical time stamps, file size, etc

▶ Named extended attributes in both NFS and SMB

▶ SMB uses the : character for named streams
▶ NFS the OPENATTR - Open Named Attribute Directory

▶ You read that right, NFS has alternate data streams!

Volker Lendecke SMB and NFS (8 / 15)



SMB Request replay

▶ SMB runs over reliable transport

▶ Before SMB2 multichannel, there was one TCP connection per client
and server machines: Replay of requests not an issue

▶ SMB2 Multichannel widens the transport to multiple connections
▶ More performance, prerequisite for SMB over RDMA
▶ “Plan B” for network disconnects

▶ Multichannel enables resending requests over a different connection

▶ Channel Sequence Number incremented on disconnects to indicate,
Client indicates replay with a bit in the SMB2 header

▶ CreateFile has a CreateGUID to identify requests re-sent

▶ Locking calls detect replay with lock sequence numbers

Volker Lendecke SMB and NFS (9 / 15)



NFS request replay

▶ UDP used to be a valid transport for NFS
▶ The ONC RPC Duplicate Request Cache is based on an opaque

32-bit XID (request ID)
▶ Correct identification of clients is problematic
▶ No mechanism to correctly throw away cache entries

▶ NFSv4.1 introduces proper DRC handling
▶ CREATE SESSION allocates an array of request slots on the server,

holding sequence numbers.
▶ Client chooses a slot number per RPC, sends its view of sequence

number
▶ Server validates sequence number increments, throws away cache

entries when client sends sequence number incremented by one

Volker Lendecke SMB and NFS (10 / 15)



Share Modes / Share Reservations

▶ SMB from the beginning was a stateful protocol

▶ Files have to be opened before use, locking was always possible

▶ For single-tasking MS-DOS compat reasons, per-open locks (share
modes) protected client applications from each other

▶ NFS before v4 was designed as stateless

▶ Locking was done in external protocols, recovery from failures is still
an area of concern

▶ NFSv4 identifies clients and servers and adds state to the protocol

▶ Recovery from client failure via leases, meaning regular client pings

▶ NFSv4 introduces share reservations to accomodate Win32 clients
▶ FILE SHARE READ and WRITE are available, DELETE is not

▶ FILE SHARE DELETE is a lock on the name: Must be done at the
directory layer

Volker Lendecke SMB and NFS (11 / 15)



Byte Range Locks

▶ NFS models Posix, SMB models NTFS

▶ Overlapping locks handled differently from SMB

▶ Advisory and mandatory possible

▶ NFS READ can ask to override any mandatory locks

Volker Lendecke SMB and NFS (12 / 15)



Locking state management

▶ In SMB, all locking state is tied to a file handle
▶ Share modes and byte range logs are dropped when the file handle is

closed
▶ One operation to potentially wipe all locking state

▶ NFS has a separate name space for “open owner” and “lock owner”
entities

▶ No clear file handle similar to a Posix FD exists

▶ Clients can implement their own “open/lock/delegation owner” name
spaces independent of particular client processes or users

▶ Still unclear how exactly map those two concepts in a central
server-side locking infrastructure

Volker Lendecke SMB and NFS (13 / 15)



Client caching

▶ SMB1 allowed clients to cache via oplocks
▶ Permission to handle requests locally per file handle
▶ Oplocks can be broken, but not in-place upgraded

▶ SMB2 introduced leases
▶ Separate key space that can be broken and upgraded while the files are

kept open

▶ SMB2 allows to cache directory contents with directory leases
▶ NFSv4 has a similar concept with file delegations

▶ Write delegations allow almost everything being cached on the client

▶ NFSv4.1 adds directory delegations, also allowing file change notify

Volker Lendecke SMB and NFS (14 / 15)



Thanks for your attention

You have to implement an NFS server to understand the RFC

vl@samba.org / vl@sernet.de
https://www.sernet.de/
https://www.samba.org/

Volker Lendecke SMB and NFS (15 / 15)


