SMB and NFS compared

SambaXP 2024
Somewhere in the internet

Volker Lendecke

SerNet / Samba Team

2024-04-18



Access paths to file systems

» Posix, NFS and SMB all give access to directories and files

» All three worlds serve different requirements with different historic
backgrounds.
P> Posix access goes through a local syscall interface
> When the “server” (i.e. the kernel) dies, all clients are gone
> When the “client” (i.e. a process) dies, the kernel immediately knows
» Client <> Server latency exists, but is extremely low
» NFS and SMB should not trip over the Fallacies of Distributed
Computing (see wikipedia)
» Everything between client and server is slow, either side and everything
in between can fail or even lie.

Volker Lendecke SMB and NFS (2 / 15) SerNet



Interoperability

» Different access paths to the same file system must coordinate

> Local file systems provide Posix (or rather typically Linux) semantics

» Linux NFS servers (knfsd/Ganesha/others) map these semantics for
NFS protocol requirements

» Same for Linux SMB servers such as ksmbd and smbd

» Other protocols like S3 also live in the same space

» Exposing protocol semantics in isolation is problem solved pretty well
in both the FOSS as well as in the proprietary worlds

» Cross-Protocol semantics to my knowledge have never been
addressed, at least not in “my bubble”, the FOSS world around
Samba

Volker Lendecke SMB and NFS (3 / 15) SerNet



How hard can it be?

» Why is it so hard?
> Posix has its subtleties (for example how to properly fsync), but basics
semantics are well-known to Linux developers
» Both SMB and NFS are complex protocols with decades of history
» Implementing either protocol is too much even for a single developer,
so understanding and implementing both takes teams separate from
each other.

» Why has this never been solved?

» From a Samba perspective, nobody cared enough
> Maybe the “NFS locking does not work” legend is either true or
sufficiently sticky for users to not rely on locking at all

Volker Lendecke SMB and NFS (4 / 15) SerNet



Areas of difference

> Security

P> NFS is usually machine-based, SMB sessions are per user
> ACLs

» File name semantics

> Case sensitive vs insensitive, special file names/characters
» File and directory metadata

» Time stamps, xattrs, alternate data streams

P> Request replay

v

Locking

> Share modes/reservations, byte range locks
» Client caching
P Leases vs delegations

Volker Lendecke SMB and NFS (5 / 15) SerNet



Security

vvyyy v

v

v

SMB had password protection of shares since the CORE protocol in
the 1980s, users could not be distinguished initially

With LANMAN 1.0 user login was added to the protocol, since then
all SMB traffic is per user (machines can also be “users”)

The scope of a security context is the transport connection
NFS relies on the underlying ONC-RPC for security

Only with NFSv4.0 RPC security via GSSAPI is a requirement
Scope of a security context in NFS is the individual request
> NFS allows different RPC security settings per directory/file

NFS protects locking state (open/share/delegation/brlock) separately
from any other authentication on the transport

A lot of NFS deployments run without any security

Volker Lendecke SMB and NFS (6 / 15) SerNet



AClLs

» SMB has ACLs defined by the Windows security model and NTFS

» Principals are Security Identifies

> SIDs don't have a type such as user/group/machine etc.

> 13 bits granting or denying specific types of access
» NFS deals with permission bits (RWXRWXRWX)

» NFSv4 adds the 13 bits from the Windows doc plus 2 more
(WRITE_.RETENTION, WRITE_RETENTION_HOLD)
NFSv4.1 adds ACL inheritance flags
Deny ACEs and system acls supported
ACCESS request can only query 6 of the 15 bits
ACE principals are full UTF-8 strings
user@domain recommended, numeric string possible, no real mandatory
standard

vVvVvyyvyy

Volker Lendecke SMB and NFS (7 / 15) SerNet



File and directory metadata

Not much significant difference

SMB has infolevels, NFS can query individual attributes
Both have the typical time stamps, file size, etc

Named extended attributes in both NFS and SMB

SMB uses the : character for named streams

NFS the OPENATTR - Open Named Attribute Directory
» You read that right, NFS has alternate data streams!

vvyVvVvyVvVyyvyy

Volker Lendecke SMB and NFS (8 / 15) SerNet



SMB Request replay

v

SMB runs over reliable transport

Before SMB2 multichannel, there was one TCP connection per client
and server machines: Replay of requests not an issue

SMB2 Multichannel widens the transport to multiple connections

» More performance, prerequisite for SMB over RDMA
» “Plan B" for network disconnects

Multichannel enables resending requests over a different connection

Channel Sequence Number incremented on disconnects to indicate,
Client indicates replay with a bit in the SMB2 header

CreateFile has a CreateGUID to identify requests re-sent

Locking calls detect replay with lock sequence numbers

Volker Lendecke SMB and NFS (9 / 15) SerNet



NFS request replay

» UDP used to be a valid transport for NFS
» The ONC RPC Duplicate Request Cache is based on an opaque
32-bit XID (request ID)
» Correct identification of clients is problematic
»> No mechanism to correctly throw away cache entries
» NFSv4.1 introduces proper DRC handling
> CREATE_SESSION allocates an array of request slots on the server,

holding sequence numbers.
» Client chooses a slot number per RPC, sends its view of sequence

number
P Server validates sequence number increments, throws away cache
entries when client sends sequence number incremented by one

Volker Lendecke SMB and NFS (10 / 15) SerNet



Share Modes / Share Reservations

» SMB from the beginning was a stateful protocol

v

Files have to be opened before use, locking was always possible

» For single-tasking MS-DOS compat reasons, per-open locks (share
modes) protected client applications from each other

v

NFS before v4 was designed as stateless

v

Locking was done in external protocols, recovery from failures is still
an area of concern

NFSv4 identifies clients and servers and adds state to the protocol
Recovery from client failure via leases, meaning regular client pings
NFSv4 introduces share reservations to accomodate Win32 clients

FILE.SHARE_READ and _WRITE are available, _.DELETE is not

» FILE_.SHARE_DELETE is a lock on the name: Must be done at the
directory layer

vvyyy

Volker Lendecke SMB and NFS (11 / 15) SerNet



Byte Range Locks

» NFS models Posix, SMB models NTFS

» Overlapping locks handled differently from SMB

» Advisory and mandatory possible

> NFS READ can ask to override any mandatory locks

Volker Lendecke SMB and NFS (12 / 15) SerNet



Locking state management

» In SMB, all locking state is tied to a file handle

» Share modes and byte range logs are dropped when the file handle is
closed
> One operation to potentially wipe all locking state

» NFS has a separate name space for “open owner” and “lock owner”
entities

» No clear file handle similar to a Posix FD exists

» Clients can implement their own “open/lock/delegation owner” name
spaces independent of particular client processes or users

» Still unclear how exactly map those two concepts in a central
server-side locking infrastructure

Volker Lendecke SMB and NFS (13 / 15) SerNet



Client caching

» SMBI1 allowed clients to cache via oplocks

» Permission to handle requests locally per file handle
» Oplocks can be broken, but not in-place upgraded

» SMB2 introduced leases
P> Separate key space that can be broken and upgraded while the files are
kept open
> SMB2 allows to cache directory contents with directory leases
» NFSv4 has a similar concept with file delegations

» Write delegations allow almost everything being cached on the client

> NFSv4.1 adds directory delegations, also allowing file change notify

Volker Lendecke SMB and NFS (14 / 15) SerNet



Thanks for your attention

You have to implement an NFS server to understand the RFC

vl@samba.org / vl@sernet.de
https://www.sernet.de/
https://www.samba.org/

Volker Lendecke SMB and NFS (15 / 15) SerNet



