
SoS: Samba on (a large) Scale: exploring ctdb Alternatives

Ralph Böhme, Samba Team, SerNet

2023-05-10

mailto:slow@samba.org


Outline

net use //thecloud

Distributed Databases: ctdb et al.

Benchmarks

Conclusions

Q&A

Outtakes: Distributed Databases

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 1/38



net use //thecloud



The Goal

$ net use \\thecloud

• Highly scalable Opensource Cloud SMB with Samba
• hundreds of nodes
• hundreds of thousands of clients

• Migrate data to the cloud while keeping applications working

• Elasticity: adding/removing nodes must be cheap

• Availability: multi-datacenter, multi-region

• Build cloud SMB like Azure SMB . . .

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 2/38



The Goal

$ net use \\thecloud

• Highly scalable Opensource Cloud SMB with Samba
• hundreds of nodes
• hundreds of thousands of clients

• Migrate data to the cloud while keeping applications working

• Elasticity: adding/removing nodes must be cheap

• Availability: multi-datacenter, multi-region

• Build cloud SMB like Azure SMB . . . with Samba

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 3/38



Off-the-shelf Building Blocks

Samba Cloud SMB Building blocks

• Clustered Filesystem
• CephFS, GPFS, GlusterFS, Lustre, . . . ?

• Distributed Database
• ctdb, . . . ?

• This time we only look at the database component

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 4/38



Distributed Databases: ctdb et al.



ctdb

ctdb limitations

• ctdb has consistency and scalability limitations
• Data is not replicated, SMB3 Persistent Handles can’t be implemented
• Use case is high-performance NAS in a single DC
• Not suited for cloud SMB at scale

• Real world scalability: production max 16 nodes, 50k clients

• Elasticity: adding or removing a node => hell freezes

• Availability: no multi-region / multi-datacenter support

The idea

• There are many scalable Open Source distributed databases out there

• Can any of those fit the bill?

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 5/38



Zoo of Distributed Databases

CockroachDB, Zookeeper, Google Spanner, Ceph, Cassandra
etcd, Azure Table, Scylla, Riak, FoundationDB

Azure CosmosDB, Apache Hbase, TiKV, Yugabyte, Google Bigtable

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 6/38



Requirements: Consistency

Consistency

• Samba needs a database with strong consistency quarantees
• for K/V-databases this means linearizability
• for transactional databases this means strict serializability
• to implement locks we need transactions or atomic compare-and-set

• This is required for data consistency and to implement locking
• locking is needed to serialize and isolate access to two resources:

filesystem and database

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 7/38



Requirements: Performance

Performance

• Due to its non-replicating design ctdb has a very high throughput and low latency
• For many workloads low latency is not first priority:

• remote office collaboration opening an .docx file: takes 200 ms longer to open?
Does it matter?

• Assume SMB workload with mostly non-concurrent file access
• the resulting DB access pattern is also non-concurrent access to different records
• depending on the database this might allow good horizontal scalability

• Expect simple PAXOS or RAFT based databases to not scale well
• the leader is a single threaded bottleneck

• Expect databases which avoid a leader bottleneck to scale better
• there are three candidates: FoundationDB, TiKV and Apache Cassandra 5 (which is

not yet released)

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 8/38



Distributed Databases Candidates

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 9/38



Distributed Databases Tested

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 10/38



Benchmarks



Benchmark

open/close in a loop

$ smbtorture //172.18.111.10/test -U slow%x \
smb2.bench.path-contention-shared \
--unclist unclist-test.txt \
--option=torture:timelimit=10 \
--option=torture:nprocs=[1-500]

Samba Cluster

• 3 nodes: VMs with 4 cores, 12 GB RAM each, SSD

• Clustered locking.tdb, but node local smbXsrv_open_global.tdb

Database: fdb, Cassandra, Scylla, etcd

• 3 nodes: VMs with 8 cores, 64 GB RAM, SSD

Ceph/RADOS

• 3 mons, 3 osds: VMs with 2 cores, 8 GB RAM, SSD

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 11/38



Results

Results

• FoundationDB is the clear winner
• achieves 10% max throughout compared to ctdb
• has multi-region / multi-datacenter support

• etcd comes next at half the throughput of FoundationDB

• Ceph/RADOS performs surprisingly bad and does not scale at all
• For contended workloads all but FoundationDB run into serious trouble

• etcd is overloaded and logs failed to send out heartbeat on time ...
• Cassandra and Scylla log LWT errors and cause application failures

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 12/38



Samba cluster, n=3, non-concurrent opens

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 13/38



Single Samba Server, non-concurrent opens

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 14/38



Samba cluster, 3 nodes, non-concurrent opens, Latency

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 15/38



dbwrap_py

dbwrap

• Samba’s pluggable database abstraction dbwrap

• Like all of Samba’s fileserver code it dbwrap is C code

• It’s C, so it’s verbose, dbwrap_ctdb.c is ~2000 lines

dbwrap_py

• To simplify new backend development I wrote a new backend in C that uses
Python C bindings to call Python scripts that implement the backend

• Roughly 1000 lines of C code (without txn support)

• Being able to use Python for the backend allows rapid prototyping and testing

$ wc -l python/samba/samba3/dbwrap_py_*
338 python/samba/samba3/dbwrap_py_cassandra.py
414 python/samba/samba3/dbwrap_py_etcd3.py
303 python/samba/samba3/dbwrap_py_fdb.py
47 python/samba/samba3/dbwrap_py_tdb.py

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 16/38



With a little help from my friend

• Python etcd backend written by Jule Anger

• C Ceph/RADOS backend provided by Samuel Cabrero

• Thank you!

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 17/38



Comparing tdb and pytdb, non-concurrent opens

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 18/38



Conclusions



Conclusions

And the winner is. . .

• FoundationDB for performance and features

• We need more tests on larger clusters

Write our own?

• Writing a scalable distributed database is hard
• Single shard PAXOS and RAFT are simple but do not scale

• use a consensus group per solves this but:
• now you need consensus for the shard key ranges
• changing the ranges when adding or removing nodes becomes a hard problem
• TiKV does this, so it’s doable

(unfortunately TiKV has neither C nor Python bindings)

• Research for efficient and fast Consensus Protocols is ongoing

• Advanced features like datacenter and region awareness

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 19/38



Outlook

Outlook

• Highly anticipating the release of Apache Cassandra 5.0

• Cassandra is kind of the Open Source industry standard for BASE databases

• 5.0 ships with strong consistency based on a new consensus protocol ACCORD

• ACCORD is a leaderless consensus protocol allowing better scalability

• ACCORD achieves consensus in one round for non-simultaneous requests

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 20/38



Q&A



Q&A

Thank you!
Questions?

Ralph Böhme
slow@samba.org
rb@sernet.de

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 21/38



Outtakes: Distributed Databases



Dream of a Distributed Database

The Dream

• Consistent, atomic, isolated

• Efficient, scalable, high throughput, low latency

• Highly available, partition tolerant, failure tolerant

Building Blocks

• Sharding - for scalability and performance

• Replication - for safety and availability

The Challenge

• Ordering of operations in the face of unreliable time sources and network delays

• Reliable and consistent replication

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 22/38



The Reality

You can’t have your cake and eat it

• Strong consistency requires communication
• Communication takes time
• Communication requires connectivity

• CAP Theorem: Consistent, Available, Partition Tolerant. Choose two!
• PACELC:

• Under Network Partition, be Available or Consistent, else
• Choose between Latency or Consistency

• So what means strongly consistent?

• What would then be weak consistency?

• And what form of consistency does Samba need?

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 23/38



Strong Consistency

So what is strong consistency

• The replicated database behaves like a single copy
• as if reads and writes are done from/to one place, not many

• All requests are strictly ordered
• as if done by a single thread
• ordered according to real time

• The technical term for strong consistency is Linearizability
• This is orthogonal to ACID of SQL databases

• ACID doesn’t deal with replicated databases at all
• the I in ACID deals with txn isolation when reading and writing multiple objects
• ACID does NOT require transaction ordering

• transactions can be executed in any order
• as long as they are Isolated by some of the configured level

• In Samba tdb is linearizabile, but ctdb is not

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 24/38



Weak Consistency

And what is weak consistency?

• BASE: Basically Available, Soft State, Eventually Consistent

• Basically Available: prefer availability over consistency

• Soft State: with time, state converges and we only have some probability of
knowing the state

• Eventually Consistent: consistent state emerges over time

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 25/38



Weak Consistency, Example 1: Monotonic Reads

Figure 1: From: https://dataintensive.net/

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 26/38

https://dataintensive.net/


Weak Consistency, Example 2: Quorum Reads and Writes

Figure 2: From: https://dataintensive.net/

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 27/38

https://dataintensive.net/


The Consistency Landscape

Figure 3: From: https://jepsen.io/consistency

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 28/38

https://jepsen.io/consistency


Weak Consistency, Implementation and Examples

Examples

• Amazon Dynamo, Apache Cassandra

• Introduced in the late 2000’s

• Highly scalable Key-Value Databases (NoSQL) that underpinned webservices like
Amazon and Facebook

Implementation

• Clients send read and write requests to one or more nodes at once

• Basically use (configurable) quorum sizes for reads and writes

• Reads can be made linearizable via read repair

• Writes can be made linearizable via previous quorum read

• Atomic compare-and-set can’t be implemented as that requires consensus

Peformance

• High throughput, low latency, excellent scalibilty

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 29/38



Strong Consistency, Implementation and Examples

Examples

• Google Bigtable, Google Spanner, Amazon DynamoDB, Azure CosmosDB,
FoundationDB, Fanua, TiKV, Ceph/RADOS

Implementation by Consensus Algorithms

1. Select a leader

2. Leader replicates client operations to followers

3. Rinse and repeat, goto step 1 (dynamic leader) or 2 (strong leader)

The hard part is leader election, typically done via quorum votes and heartbeets for
liveliness.

The devil’s in the detail and that’s where Consensus Algorithms do things differenty:

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 30/38



Consensus Algorithms History

Consensus Algorithms History

• 1988: Viewstamped Replication by Barbara Liskov and James Cowling

• 1990: Paxos by Leslie Lamport

• 2011: ZAB (Zookeeper Atomic Broadcast) by Flavio P. Junqueira et al.

• 2014: Raft by Diego Ongaro and John Ousterhout

Strong-Leader vs Dynamic-Leader

• Camp strong leader: VR, ZAB, Raft, Multi-Paxos (goto 2)

• Camp dynamic leader: Paxos (goto 1)

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 31/38



Pros and Cons of Leader-based Consensus Algorithms

Advantage of leader-based algorithms

• (Relatively) Simple implementation

Disadvantage of leader-based algorithms

• All operations must be processed by a single thread in the leader

• The leader can become a bottleneck

• WAN deployments further increase latency for clients
in other regions than the leader

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 32/38



Avoiding the Leader Bottleneck: Consensus Group per Shard

Single shard PAXOS and RAFT are simple but do not scale

• use a consensus group per solves this but:

• now you need consensus for the shard key ranges

• changing the ranges when adding or removing nodes becomes a hard problem

• TiKV and all distributes SQL servers do this

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 33/38



Avoiding the Leader Bottleneck: FoundationDB

Seperate sequencing from replication

1. Agree on a sequencer via an election round using majority quorum
(sequencer = Timestamp Oracle)

2. The sequencer assigns a monotically increasing timestamp

3. Client request processing:
3.1. Request the timestamp from the sequencer
3.2. Send request to a follower who further coordinates and replicates the request

The sequencer is still a singleton in the cluster but it performs much less work
compared to the leader that also does the replication.

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 34/38



Leaderless Consensus Algorithms and other Enhancements

Leaderless, Flexible Quorums

• Fast Paxos (2005): leaderless, 1 RTT for non-simultaneous ops
• Epaxos (2013): another leaderless algorithms

• explicit dependency tracking, more complex then Fast Paxos without advantages (?)

• Flexible Paxos (2016): flexible quorums for replication and leader election

• Fast Flexible Paxos (2021): combines Fast Paxos and Flexible Paxos
• Accord (2022): leaderless, 1 RTT for non-simultaneous ops

• based on Fast Flexible Paxos plus Timestamp Reorder Buffer
• reduces conflicts of simultaneous ops by reodering received messages in a receive

buffer based on operation timestamp and node distance

Real world implementations

• Unfortunately no Open Source real world system implementation any of those

• Apache Cassandra 5.0 will ship an implementation of Accord in late 2023

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 35/38



Pros and Cons of Leaderless Consensus Algorithms

Advantage of leaderless algorithms

• Avoid the leader bottleneck

Disadvantage of leaderless algorithms

• Significantly increased implementation complexity

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 36/38



Zoo of Distributed Databases: Consistency

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 37/38



Zoo of Distributed Databases: SQL vs NoSQL

Ralph Böhme, SerNet Samba Team SoS: Samba on (a large) Scale: exploring ctdb Alternatives 38/38


	net use //thecloud
	Distributed Databases: ctdb et al.
	Benchmarks
	Conclusions
	Q&A
	Outtakes: Distributed Databases

